Synthesis and ring opening reactions of a 2-silabicyclo[2.1.0]pentane[†]

Gerhard Maas,* Birgit Daucher, Alexandra Maier and Voker Gettwert

Division of Organic Chemistry I, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany. E-mail: gerhard.maas@chemie.uni-ulm.de; Fax: +49 (0)731 50 22803; Tel: +49 (0)731 50 22790

Received (in Cambridge, UK) 30th September 2003, Accepted 22nd October 2003 First published as an Advance Article on the web 3rd November 2003

Methyl 2-silabicyclo[2.1.0]pentane-1-carboxylate, obtained by a photochemical intramolecular cyclopropanation reaction of an α -allylsilyl- α -diazoacetate, undergoes ring opening reactions under different conditions leading to methyl 2-[diisopropyl(methoxy)silylmethyl]cyclopropane-1-carboxylate, a 1-sila-4-cyclopentene-2-carboxylate or an allyl(methoxysilyl)ketene.

Intramolecular carbene and metal–carbene reactions of appropriately functionalized diazo compounds allow the ready construction of a broad range of carbo- and heterocyclic rings.^{1–5} Starting from silyldiazoalkanes and silyldiazoacetates, this strategy gives access to various silaheterocycles⁶ mainly by C,H insertion,^{7–10} intramolecular cyclopropanation,¹⁰ and reaction at a C=C bond.¹¹ Successful intramolecular cyclopropanation reactions with allylox-ysilyl- and [(3-butenyl)oxysilyl]-diazoacetates¹⁰ led us to wonder whether the tether between the two reacting functionalities could be shortened by one member, *i.e.* whether (allylsilyl)diazoacetates would still undergo an intramolecular cyclopropanation reaction, yielding the so far unknown 2-silabicyclo[2.1.0]pentane skeleton.

For the synthesis of silyl-functionalized α -silyl- α -diazoacetates, we have introduced a procedure in which a silyl bis(triflate) is reacted with an alkyl diazoacetate and a (hetero)nucleophile.¹² Efforts to prepare **2** by this method gave unsatisfactory results, and therefore an alternative was developed: reaction of allyl(chlor-o)(diisopropyl)silane, readily prepared from dichloro(diisopropyl)silane and allylmagnesium chloride, with an excess (3–4 equiv.) of methyl α -lithio- α -diazoacetate¹³ gave **1** in yields of up to 81% based on the silane (Scheme 1).

We were pleased to find that irradiation of diazoacetate **1** with 300 nm light (toluene, 2.5 h) gave 2-silabicyclo[2.1.0]pentane **2** which could be isolated in 68% yield. In contrast, thermal (180–250 °C) and catalytic ($Rh_2(OOCC_3F_7)_4$) decomposition of **1** was unspecific and no products were identified.

The constitution of **2** was established by 1D and 2D NMR spectroscopy. In addition to these data,[‡] the shielding effect of silicon on the adjacent CH₂ group, as compared to the ¹H and ¹³C chemical shifts of the parent bicyclo[2.1.0]pentane,¹⁴ and the coupling constants ¹*J*(C-4,H) (181 Hz) and ¹*J*(C-5,H) (165 Hz) leave no doubt about the silabicyclopentane structure.

Obviously, 2 is formed by an intramolecular [2+1] cycloaddition reaction of the carbene intermediate derived from 1. This is a

† Electronic supplementary information (ESI) available: experimental procedures, and physical and spectroscopic data for compounds 1–3, 5 and 7. See http://www.rsc.org/suppdata/cc/b3/b312110k/ remarkable result, since the formation of bicyclo[2.1.0]pentane ring systems by intramolecular carbene cyclopropanation is rare, in contrast to bicyclo[3.1.0]- and bicyclo[4.1.0]alkane systems. While the intermediacy of bicyclo[2.1.0]pentan-2-ones in the so-called vinylogous Wolff rearrangement of γ , δ -unsaturated α -diazoketones¹⁵ has been known for some time, the first isolation of bicyclo[2.1.0]pentane-1-carboxylates from diazo compounds, namely by Rh(n)-catalysed decomposition of 2-diazo-3,3-difluoro-5-hexenoates, has been reported only recently.¹⁶

Compound 2 is the first sila analogue of bicyclo[2.1.0]pentane ("housane"), which was reported as long ago as 1957,17 and of 1-methoxycarbonylbicyclo[2.1.0]pentane.¹⁸ Some chemical properties of compound 2 are described briefly in the following (Scheme 2). The compound remains unchanged for at least 1-2weeks in solutions of pure CDCl₃, CD₃CN and [D₆]-EtOH. Also, heating of acetonitrile or ethanol solutions of 2 at 60 °C for 1 day left 2 unchanged. However, after 15 h in methanol solution, 2 had disappeared completely and methyl 2-[diisopropyl(methoxy)silylmethyl]cyclopropane-1-carboxylate (3) was isolated in 48% yield (ca. 90% yield before distillation according to ¹H NMR) as a diastereomeric mixture (E: Z = 53: 47). Similarly, treatment of 2 with $[D_4]$ -methanol gave the expected $[D_4]$ -3. The nearly complete loss of stereochemical information at the cyclopropane ring indicates that the ring opening of 2 occurs by a nucleophilic attack at silicon followed by Si-C bond cleavage with the acceptorsubstituted cyclopropyl anion as the leaving group. The configurational instability of ester-substituted cyclopropyl anions is a known fact. The analogous reaction with EtOH was achieved only by catalysis with aqueous conc. HCl and was found to be less clean by ¹H NMR. According to GC/MS analysis, 4-OEt (73%), 4-OH (23.5%), and 4-Cl (1%) were the major volatile components.

The nucleophile-induced Si–C cleavage of **2** by MeOH is reminiscent of solvent-induced isomerization¹⁹ and nucleophilic substitution²⁰ of monocyclic 1-halo- and 1-alkoxysilacyclobutanes. It has been suggested that the ready reaction of silacyclobutanes with Lewis bases is due to the formation of a pentacoordinate silicon species with concomitant release of angle strain.²¹

When 2 was treated in chloroform solution with a catalytic amount of p-toluenesulfonic acid, an 85:15 mixture of two

Scheme 2 Reactions and conditions: (i) CH₃OH, 15 h, rt, 48% yield; (ii) CD₃OD, 15 h, rt; (iii) EtOH, conc. HCl; X = Cl, OEt, OH; (iv) CHCl₃, cat. TsOH, 5 days, 62%.

products was obtained with 1-sila-4-cyclopentene **5** as the major product. The double bond position in **5** could be derived from the proton coupling in the ¹H NMR spectrum;‡ furthermore, the IR absorption at 1545 cm⁻¹ (C=C stretching mode) is considered characteristic of 1-sila-2-cyclopentenes, while 1-sila-3-cyclopentenes have an absorption at 1610–1620 cm⁻¹.²² With the small quantities obtained, the minor product could not be separated from **5**, but its ¹H NMR signals suggest a 2-silylated 4-pentenoate **6**, the (Si)–X substituent of which is perhaps OH or a condensation product of SiOH. It is reasonable to assume that the formation of both products begins with the H⁺-induced opening of the C1–C4 bond (possibly initiated by protonation of the carbonyl function) of silabicyclopentane **2** leading to a 3-silacyclopentyl cation which can either lose a proton to form silacyclopentene **5** or fragment to give acyclic alkene **6**.

Silabicyclopentane 2 is a thermally quite stable compound. However, thermolysis in toluene solution at 150 °C was completed in 29 h and according to GC/MS analysis gave a mixture of at least ten products from which only allyl(alkoxysilyl)ketene 8 could be isolated in 7% yield (Scheme 3).[‡] After only 19 h of thermolysis (87% conversion), the yield of 8 was 20%. When the thermolysis of 2 was performed in methanol (110 °C, 24 h), an 83 : 17 mixture of cyclopropane 3 and i-Pr₂Si(OMe)CH(CO₂Me)CH₂CH=CH₂, the methanol addition product of 7, was obtained. The isomerization $2 \rightarrow 8$ is likely to proceed through a [2+2] cycloreversion of 2 generating the silaethene intermediate 7 which rearranges to form ketene 8 by a $1,3(C \rightarrow Si)$ OMe shift. While similar short-lived alkoxycarbonyl-silenes have been generated from appropriate silvldiazoacetates by a Wolff-type carbene-to-silene rearrangement,²³ the thermal cycloreversion of silabicyclopentane 2 represents a novel access to acyl-substituted silaethenes. It should be noted that the generation of simple silaethenes by [2+2] cycloreversion from monocyclic silacyclobutanes requires pyrolysis or laser photolysis conditions.24

In conclusion, we have prepared the first 2-silabicyclo-[2.1.0]pentane by a photochemical intramolecular cyclopropanation. Three ring opening modes were found, namely cleavage of the Si–C1 bond to form a (silylmethyl)cyclopropane, opening of the C1–C4 bond to form a 1-sila-2-cyclopentene, and [2+2] cycloreversion yielding an acylsilene intermediate which rearranges to an (alkoxysilyl)ketene.

Financial support of this work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

Notes and references

[‡] Selected physical and spectroscopic data. Compound **2**: $\delta_{\rm H}$ (500.14 MHz, CDCl₃) 0.67 (dd, ²J 14.1, ³J 1.2, 1H, 3-H_{endo}), 1.03 ("s", 4H, CHMe + CHMe₂), 1.06 (d, 3H, CHMe), 1.07 (dd, 1H, 3-H_{exo}, obscured by *i*-Pr signals), 1.08 and 1.11 (each d, ³J 7.5, 3H, CHMe), 1.29 (pseudo-t, 1H, 5-H_{syn}), 1.33 (sept, 2H, CHMe₂), 1.72 (mc (centered multiplet), 1H, 5-H_{antil}), 2.25 (mc, 1H, 4-H), 3.61 (s, 3H, OMe); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 8.4 (C-3), 11.8/13.1 (CHMe₂), 16.99 (C-1), 17.01/17.13/17.28/18.31 (CHMe₂), 23.9 (²J(C,H) 165, C-5), 26.6 (²J(C,H) 181, C-4), 51.3 (OMe), 174.5 (C=O);

$$\begin{split} &\delta_{\rm Si} \ (99.36\ {\rm MHz})\ 10.7.\ {\rm Compound}\ {\bf 5}:\ \delta_{\rm H}\ (400.14\ {\rm MHz},\ {\rm CDCl}_3) \\ &0.91/0.97/1.01/1.05\ (4\ d,\ 12\ {\rm H},\ {\rm CHMe}_2),\ ca.\ 0.90-1.00\ (1{\rm H},\ {\rm CHMe}_2), \\ &{\rm covered}\ by\ other\ signals),\ 1.08\ ({\rm sept},\ 1{\rm H},\ {\rm CHMe}_2),\ 2.43\ (dd,\ {}^3J\ 8.7,\ J\ 6.3, \\ &{\rm H},\ 2-{\rm H}),\ 2.64\ ({}^2J\ 18.4,\ {}^3J\ 8.7,\ {}^3J\ 2.9,\ {}^4J\ 1.9,\ 1{\rm H},\ 3-{\rm H}),\ 2.92\ ({}^2J\ 18.4,\ {}^3J\ 6.3, \\ &{}^3J\ =\ {}^4J\ =\ 2.4,\ 1{\rm H},\ 3-{\rm H}),\ 3.64\ ({\rm s},\ 3{\rm H},\ {\rm OMe}),\ 5.73\ (dt,\ {}^3J\ 10.4,\ {}^4J\ 2.2,\ 1{\rm H}, \\ &{}^5-{\rm H}),\ 6.83\ (dt,\ {}^3J\ 10.4,\ 2.7,\ 1{\rm H},\ 4-{\rm H});\ \delta_{\rm C}\ (100.6\ {\rm MHz})\ 11.5\ ({\rm CHMe}_2), \\ &{}^{17.81/17.87/18.21\ ({\rm CHMe}_2),\ 28.6\ ({\rm C}{^-2}),\ 35.7\ ({\rm C}{^-3}),\ 51.5\ ({\rm OMe}),\ 123.6\ ({\rm C}{^-5}),\ 153.0\ ({\rm C}{^-4}),\ 176.2\ ({\rm C}{^-O}).\ {\rm Compound}\ {\bf 8}:\ \delta_{\rm H}\ (200.13\ {\rm MHz},\ {\rm CDCl}_3) \\ &{}^{0.98-1.04\ (m,\ 14{\rm H},\ {\rm CHMe}_2),\ 2.59-2.64\ (dt,\ 2{\rm H},\ {\rm CH}_2-{\rm allyl}),\ 3.47\ ({\rm s},\ 3{\rm H}, \\ {\rm OMe}),\ 4.96\ (dt,\ {}^3J\ 10.5,\ {}^2J\ =\ 4J\ =\ 1.5),\ 5.10\ (dt,\ {}^3J\ 16.7,\ {}^2J\ =\ 4J\ =\ 1.5), \\ 5.74-5.94\ (m,\ 1{\rm H});\ \delta_{\rm C}\ (50.32\ {\rm MHz})\ 9.3\ ({\it C}{^-C}{^-O}),\ 13.0\ ({\rm SiCH}),\ 17.3\ ({\rm CHMe}_2),\ 25.9\ ({\rm CH}_2-{\rm allyl}),\ 5.1.5\ ({\rm OMe}),\ 115.3,\ 136.6,\ 181.7\ ({\rm C}{^-C}{^-O});\ {\rm V(film)/cm}^{-1}\ 2089\ ({\rm s},\ C{^-C}{^-O}). \end{split}$$

- (a) S. T. Burke and P. A. Grieco, Org. React., 1979, 26, 361–475; (b) A.
 F. Khlebnikov, M. S. Novikov and R. R. Kostikov, Adv. Heterocycl. Chem., 1996, 65, 93–233.
- 2 Methoden der Organischen Chemie (Houben-Weyl), Vol. 19b, ed. M. Regitz, Thieme, Suttgart, 1989.
- 3 G. Maas, Top. Curr. Chem., 1987, 137, 77–253.
- 4 T. Ye and M. A. McKervey, Chem. Rev., 1994, 94, 1091-1160.
- 5 M. P. Doyle, M. A. McKervey and T. Ye, *Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides*, Wiley, New York, 1998.
- 6 G. Maas, in *The chemistry of organic silicon compounds*, Vol. 2, Part 1, eds. Z. Rappoport and Y. Apeloig, John Wiley & Sons, Chichester, 1998, ch. 13.
- 7 G. Maas and S. Bender, Chem. Commun., 2000, 437-438.
- 8 M. Trommer and W. Sander, Organometallics, 1996, 15, 736-740.
- 9 S. N. Kablean, S. P. Marsden and A. M. Craig, *Tetrahedron Lett.*, 1998, 39, 5109–5112.
- 10 G. Maas, F. Krebs, T. Werle, V. Gettwert and R. Striegler, *Eur. J. Org. Chem.*, 1999, 1939–1946.
- 11 V. Gettwert, F. Krebs and G. Maas, Eur. J. Org. Chem., 1999, 1213–1221.
- 12 A. Fronda, F. Krebs, B. Daucher, T. Werle and G. Maas, J. Organomet. Chem., 1992, 424, 253–272.
- (a) S. Motallebi and P. Müller, Organometallics, 1993, 12, 4668–4672;
 (b) C. J. Moody and R. J. Taylor, Tetrahedron Lett., 1987, 28, 5351–5352.
- 14 (a) R. Roth and M. Martin, *Liebigs Ann. Chem.*, 1967, **702**, 1–7; (b) J. Hoffmann and J. Voß, *Chem. Ber.*, 1992, **125**, 1415–1419.
- 15 (a) A. B. Smith III, B. H. Toder and S. J. Branca, J. Am. Chem. Soc., 1984, 106, 3995–4001; (b) S. Motallebi and P. Müller, Helv. Chim. Acta, 1993, 76, 2803–2813.
- 16 (a) G. Shi and W. Cai, J. Chem. Soc., Perkin Trans. 1, 1996, 2337-2338.
- (a) R. Criegee and A. Rimmelin, *Chem. Ber.*, 1957, **90**, 414–417; (b) D.
 H. White, P. B. Condit and R. G. Bergman, *J. Am. Chem. Soc.*, 1972, **94**, 1348–1350.
- 18 P. G. Gassman and K. T. Mansfield, J. Org. Chem., 1967, 32, 915–920.
- 19 B. G. McKinnie and F. K. Cartledge, J. Organomet. Chem., 1976, 104, 407–411.
- 20 J. Dubac, P. Mazerolles and B. Serres, *Tetrahedron*, 1974, **30**, 759–765.
- 21 (a) S. A. Sullivan, C. H. DePuy and R. J. Damrauer, *J. Am. Chem. Soc.*, 1981, **103**, 480–481; (b) R. Corriu and C. Guerin, *J. Organomet. Chem.*, 1980, **195**, 261–274; (c) S. E. Denmark, B. D. Griedel, D. M. Coe and M. E. Schnute, *J. Am. Chem. Soc.*, 1994, **116**, 7026–7043.
- 22 (a) R. A. Benkeser, Y. Nagai, J. L. Noe, R. F. Cunico and P. H. Gund, J. Am. Chem. Soc., 1964, 86, 2446–2451; (b) T. H. Chao, S. L. Moore and J. Laane, J. Organomet. Chem., 1971, 33, 157–160; (c) G. Manuel, P. Mazerolles and J. M. Darbon, J. Organomet. Chem., 1973, 59, C7– C10.
- 23 (a) W. Ando, A. Sekiguchi and T. Sato, J. Am. Chem. Soc., 1981, 103, 5573–5574; (b) G. Maas, M. Gimmy and M. Alt, Organometallics, 1992, 11, 3813–3820.
- 24 T. Müller, W. Ziche and N. Auner, in *The chemistry of organic silicon compounds*, Vol. 2, Part 2, eds. Z. Rappoport and Y. Apeloig, Wiley, Chichester, 1998, ch. 16.